Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Clin Drug Investig ; 43(5): 335-346, 2023 May.
Article in English | MEDLINE | ID: covidwho-2319264

ABSTRACT

BACKGROUND: Management of drug-drug interactions (DDIs) for ensitrelvir, a novel 3-chymotrypsin-like protease inhibitor of SARS-CoV-2 infection is crucial. A previous clinical DDI study of ensitrelvir with midazolam, a clinical index cytochrome P450 (CYP) 3A substrate, demonstrated that ensitrelvir given for 5 days orally with a loading/maintenance dose of 750/250 mg acted as a strong CYP3A inhibitor. OBJECTIVES: The objectives of this study were to investigate the effect of ensitrelvir on the pharmacokinetics of CYP3A substrates, dexamethasone, prednisolone and midazolam, and to assess the pharmacokinetics, safety, and tolerability of ensitrelvir following multiple-dose administration of ensitrelvir. METHODS: This was a Phase 1, multicenter, single-arm, open-label study in healthy Japanese adult participants. The effects of multiple doses of ensitrelvir in the fasted state on the pharmacokinetics of dexamethasone, prednisolone, and midazolam were investigated. Ensitrelvir was administered from Day 1 through Day 5, with a loading/maintenance dose of 750/250 mg for the dexamethasone and prednisolone cohorts whereas 375/125 mg for the midazolam cohort. Either dexamethasone, prednisolone, or midazolam was administered alone (Day - 2) or in combination with ensitrelvir (Day 5) in each of the cohorts. Additionally, dexamethasone or prednisolone was administered on Days 9 and 14. The pharmacokinetic parameters of ensitrelvir, dexamethasone, prednisolone, and midazolam were calculated based on their plasma concentration data with non-compartmental analysis. In safety assessments, the nature, frequency, and severity of treatment-emergent adverse events were evaluated and recorded. RESULTS: The area under the concentration-time curve (AUC) ratio of dexamethasone on Day 5 was 3.47-fold compared with the corresponding values for dexamethasone alone on Day - 2 and the effect diminished over time after the last dose of ensitrelvir. No clinically meaningful effect was observed for prednisolone. The AUC ratio of midazolam was 6.77-fold with ensitrelvir 375/125 mg suggesting ensitrelvir at 375/125 mg strongly inhibits CYP3A similar to that at 750/250 mg. No new safety signals with ensitrelvir were reported during the study. CONCLUSION: The inhibitory effect for CYP3A was confirmed after the last dose of ensitrelvir, and the effect diminished over time. In addition, ensitrelvir at 375/125 mg showed CYP3A inhibitory potential similar to that at 750/250 mg. These findings can be used as a clinical recommendation for prescribing ensitrelvir with regard to concomitant medications. CLINICAL TRIAL REGISTRATION: Japan Registry of Clinical Trials identifier: jRCT2031210202.


Subject(s)
COVID-19 , Cytochrome P-450 CYP3A Inhibitors , Indazoles , Adult , Humans , Area Under Curve , Cytochrome P-450 CYP3A/metabolism , Cytochrome P-450 CYP3A Inhibitors/adverse effects , Dexamethasone/pharmacokinetics , Drug Interactions , East Asian People , Indazoles/adverse effects , Midazolam/pharmacokinetics , Prednisolone/pharmacokinetics , SARS-CoV-2 , Triazines/adverse effects , Triazoles/adverse effects
2.
J Clin Pharmacol ; 63(8): 918-927, 2023 08.
Article in English | MEDLINE | ID: covidwho-2303678

ABSTRACT

Drug-drug interaction potentials of ensitrelvir, a novel oral inhibitor of 3C-like protease of severe acute respiratory syndrome coronavirus 2, for drug transporters were evaluated by in vitro and clinical studies. The target drug transporters assessed were P-glycoprotein (P-gp), breast cancer resistance protein (BCRP), organic anion transporting polypeptide (OATP) 1B1, OATP1B3, organic anion transporter (OAT) 1, OAT3, organic cation transporter (OCT) 1, OCT2, and multidrug and toxin extrusion 1 and 2K. In vitro study revealed that ensitrelvir is a substrate for P-gp and BCRP and inhibits P-gp, BCRP, OATP1B1, OATP1B3, OCT1, and OAT3. Based on these results, a clinical drug-drug interaction study to evaluate the effect of ensitrelvir on the pharmacokinetics of P-gp, BCRP, OATP1B1, OATP1B3, and OCT1 substrates was conducted with a cocktail approach using digoxin (P-gp substrate), rosuvastatin (BCRP, OATP1B1, and OATP1B3 substrate), and metformin (OCT1 substrate). The cocktail was administered first, and after the washout period, the cocktail was coadministered with 500 mg of ensitrelvir. No treatment-emergent adverse events were observed. Pharmacokinetic analyses demonstrated that the ratios (90% confidence intervals) of "cocktail with ensitrelvir" to "cocktail without ensitrelvir" for maximum plasma concentration and area under the plasma concentration-time curve were, respectively, 2.17 (1.72-2.73) and 1.31 (1.13-1.52) for digoxin, 1.97 (1.73-2.25) and 1.65 (1.47-1.84) for rosuvastatin, and 1.03 (0.91-1.16) and 1.02 (0.94-1.11) for metformin. The results indicate that the exposure levels of digoxin and rosuvastatin increased when coadministered with ensitrelvir, but those of metformin were not changed. In conclusion, ensitrelvir has an impact on the exposure levels of P-gp, BCRP, OATP1B1, and OATP1B3 substrates.


Subject(s)
COVID-19 , Metformin , Organic Anion Transporters , Humans , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , SARS-CoV-2 , Rosuvastatin Calcium/pharmacokinetics , Protease Inhibitors , Neoplasm Proteins/metabolism , Membrane Transport Proteins/metabolism , Drug Interactions , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Digoxin/pharmacokinetics , Enzyme Inhibitors , Organic Cation Transporter 1 , Metformin/pharmacokinetics , Biological Transport , Solute Carrier Organic Anion Transporter Family Member 1B3/metabolism
3.
Antimicrob Agents Chemother ; 66(10): e0069722, 2022 10 18.
Article in English | MEDLINE | ID: covidwho-2029466

ABSTRACT

This multicenter, double-blind, phase 2a part of a phase 2/3 study assessed the efficacy and safety of ensitrelvir, a novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 3C-like protease inhibitor, in Japanese patients with mild-to-moderate coronavirus disease 2019 (COVID-19) or asymptomatic SARS-CoV-2 infection. Sixty-nine patients were randomized (1:1:1) to orally receive 5-day ensitrelvir fumaric acid (375 mg on day 1 followed by 125 mg daily, or 750 mg on day 1 followed by 250 mg daily) or placebo and followed up until day 28. The primary outcome was the change from baseline in the SARS-CoV-2 viral titer. A total of 16, 14, and 17 patients in the ensitrelvir 125 mg, ensitrelvir 250 mg, and placebo groups, respectively, were included in the intention-to-treat population (mean age: 38.0 to 40.4 years). On day 4, the change from baseline in SARS-CoV-2 viral titer (log10 50% tissue culture infectious dose/mL) in patients with positive viral titer and viral RNA at baseline was greater with ensitrelvir 125 mg (mean [standard deviation], -2.42 [1.42]; P = 0.0712) and 250 mg (-2.81 [1.21]; P = 0.0083) versus placebo (-1.54 [0.74]); ensitrelvir treatment reduced SARS-CoV-2 RNA by -1.4 to -1.5 log10 copies/mL versus placebo. The viral titer and viral RNA were similar across groups on and after day 6. The median time to infectious viral clearance decreased by approximately 50 h with ensitrelvir treatment. All adverse events were mild to moderate. Ensitrelvir treatment demonstrated rapid SARS-CoV-2 clearance and was well tolerated (Japan Registry of Clinical Trials identifier: jRCT2031210350).


Subject(s)
Anti-Infective Agents , COVID-19 Drug Treatment , Humans , Adult , SARS-CoV-2 , RNA, Viral , Japan , Protease Inhibitors , Antiviral Agents , Enzyme Inhibitors , Double-Blind Method
4.
Antimicrob Agents Chemother ; 66(10): e0063222, 2022 10 18.
Article in English | MEDLINE | ID: covidwho-2019711

ABSTRACT

Ensitrelvir is a novel selective inhibitor of the 3C-like protease of SARS-CoV-2, which is essential for viral replication. This phase 1 study of ensitrelvir assessed its safety, tolerability, and pharmacokinetics of single (part 1, n = 50) and multiple (part 2, n = 33) ascending oral doses. Effect of food on the pharmacokinetics of ensitrelvir, differences in pharmacokinetics of ensitrelvir between Japanese and white participants, and effect of ensitrelvir on the pharmacokinetics of midazolam (a cytochrome P450 3A [CYP3A] substrate) were also assessed. In part 1, Japanese participants were randomized to placebo or ensitrelvir at doses of 20, 70, 250, 500, 1,000, or 2,000 mg. In part 2, Japanese and white participants were randomized to placebo or once-daily ensitrelvir at loading/maintenance dose 375/125 mg or 750/250 mg for 5 days. Most treatment-related adverse events observed were mild in severity and were resolved without treatment. Plasma exposures showed almost dose proportionality, and geometric mean half-life of ensitrelvir following the single dose was 42.2 to 48.1 h. Food intake reduced Cmax and delayed Tmax of ensitrelvir but did not impact the area under the curve (AUC), suggesting suitability for administration without food restriction. Compared with Japanese participants, plasma exposures were slightly lower for white participants. Ensitrelvir affected the pharmacokinetics of CYP3A substrates because of increase in AUC of midazolam coadministered with ensitrelvir 750/250 mg on day 6. In conclusion, ensitrelvir was well-tolerated and demonstrated favorable pharmacokinetics, including a long half-life, supporting once-daily oral dosing. These results validate further assessments of ensitrelvir in participants with SARS-CoV-2 infection.


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , Indazoles , Triazines , Adult , Humans , Administration, Oral , Antiviral Agents/pharmacokinetics , Antiviral Agents/therapeutic use , Area Under Curve , Cytochrome P-450 CYP3A , Dose-Response Relationship, Drug , Double-Blind Method , Enzyme Inhibitors , Healthy Volunteers , Midazolam/therapeutic use , Peptide Hydrolases , Protease Inhibitors , SARS-CoV-2 , Indazoles/pharmacokinetics , Indazoles/therapeutic use , Triazines/pharmacokinetics , Triazines/therapeutic use , Triazoles/pharmacokinetics , Triazoles/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL